Oxygen Containing Organic Compounds - II

ALDEHYDES AND KETONES

Section - 1

The compounds which contain a carbonyl group, > C = O with two valence of carbon satisfied by H or two alkyl (phenyl) groups are known as aldehydes and ketones. Aldehydes have alkyl or aryl, alkenyl group on one side of > C = O and H atom to the other side: whereas in ketones, the carbonyl group is situated between two carbon atoms (alkyl or aryl).

Important Aldehydes:

НСНО	(Formaldehyde)	C ₆ H ₅ CHO	(Benzaldehyde)
CH ₃ CHO	(Acetaldehyde)	CH ₂ =CHCHO	(Acrolein)
(CH ₃) ₂ CHCHO	(Isobutyraldehyde)	CH ₃ CH=CHCHO	(Crotonaldehyde)
C.H.CH.CHO	(Benzyl aldehyde)	C.H.CH=CHCHO	(Cinnamaldehyde)

Important Ketones:

CH ₃ COCH ₃	(Acetone)	$CH_3COCH = CH_2$	(Methyl vinyl ketone)
CH ₃ COC ₂ H ₅	(Methyl ethyl ketone)	$C_6H_5CH = CHCOCH_3$	(Benzal acetone)
C ₆ H ₅ COCH ₃	(Acetophenone)	=0	(Cyclopentanone)
$C_6H_5COC_6H_5$	(Benzophenone)		
C ₆ H ₅ CH ₂ COCH ₃	(Benzyl methyl ketone)	=0	(Cyclohexanone)

Preparation:

1. Oxidation of alcohols:

By controlled oxidation of alcohols using K₂Cr₂O₇ at low temperature, alcohols are oxidised to aldehydes.

$$\begin{array}{c} \text{RCH}_2\text{OH} \xrightarrow{\text{(O)}} \text{RCHO} \xrightarrow{\text{(O)}} \text{RCHO} \xrightarrow{\text{(O)}} \text{RCOOH (Not a good method for aldehydes)} \\ \\ \text{RCHOH} \xrightarrow{\text{H}_2\text{CrO}_4/\text{Me}_2\text{CO}} \text{RCO} \xrightarrow{\text{ISON}} \text{RCOOH (Not a good method for aldehydes)} \\ \\ \text{R'} & \text{ISON} \end{array}$$

The oxidation of primary alcohols can be brought by using Pyridinium chlorochromate, $C_5H_5NH^+CrO_3Cl^-(PCC)$ to aldehydes. PCC does not oxidise aldehydes to acids.

$$R - CH_2OH \xrightarrow{PCC} R - CHO \xrightarrow{PCC} No oxidation$$

Oppenauer oxidation : Using a specific oxidising agent like Aluminium tert. Butoxide, i.e., $[(CH_3)_3C - O]_3Al$ in presence of Acetone, secondary alcohols can be oxidised to ketones.

2. Dehydrogenation of Alcohols:

Note: 3° alcohols undergo dehydration (alkene formation)

3. From Alkenes:

(a) Ozonolysis: (refer to alkenes)

$$> C = C < + O_3 \longrightarrow > C \bigcirc C < \xrightarrow{Zn/H_2O} > C = O + O = C < + Zn(OH)_2$$

Ozonide

Ozonide

(b) Oxo-process: (only for Aldehydes)

It is an industrial method for formation of aldehydes from alkenes, where the catalyst, cobalt carbonyl at high temperature and pressure is used.

$$RCH = CH_2 + CO + H_2 \xrightarrow{\left[Co(CO)_4\right]_2} RCH_2CH_2CHO$$

(c) Wacker Process:

$$CH_2 = CH_2 + PdCl_2 + H_2O \xrightarrow{CuCl_2} CH_3CHO + Pd + 2HCl$$
aldehyde

$$CuCl_2 + CH_2 + PdCl_2 + H_2O \xrightarrow{CuCl_2} CH_2COCH_2 + Pd + 2HCl_2$$

$$CH_3CH = CH_2 + PdCl_2 + H_2O \xrightarrow{CuCl_2} CH_3COCH_3 + Pd + 2HCl$$
ketone

4. Hydration of Alkynes:

$$HC \equiv CH + H_2O \xrightarrow{H_2SO_4(42\%)} HC = CHOH \xrightarrow{\text{tautomerism}} CH_3CHO$$

$$H = \text{enol form} \qquad \text{keto form}$$

$$CH_3C \equiv CH + H_2O \xrightarrow{H_2SO_4} CH_3C = CH_2 \xrightarrow{\text{tautomerism}} CH_3C - CH_3$$

$$OH = \text{enol form} \qquad \text{keto form}$$

Note: Keto form is more stable than enol form.

5. Hydroboration-oxidation of Alkynes: *Syn, Anti-Markovnikov and free from any rearrangement.*

Hydroboration of terminal alkynes gives aldehydes.

$$RC \equiv CH \xrightarrow{BH_3/THF} \begin{bmatrix} RCH = C \\ H \end{bmatrix}_3 \xrightarrow{H_2O_2} RCH = CHOH \xrightarrow{Tautomerises} RCH_2CHO$$
 an aldehyde

However, if non-terminal alkynes are used, ketones are formed.

$$RC \equiv C - R \xrightarrow{1.BH_3/THF} RCH_2 - C - R$$

$$0$$

$$0$$

6. Hydrolysis of gem - dihalides

(i)
$$\begin{array}{c} H \\ | & | \\ -C - C - C1 \\ | & | \\ C1 \\ \end{array} \xrightarrow{aq. \ KOH} \begin{array}{c} H \\ | & | \\ -C - C - OH \\ \hline \end{array} \xrightarrow{-H_2O} \begin{array}{c} -H_2O \\ | & | \\ -C - C - C - OH \\ \end{array}$$

7. Pyrolysis (heating) of Calcium Salts of acids:

(i) O O
$$\parallel$$
 \parallel $(CH_3-C-O)_2Ca \xrightarrow{\Delta} CH_3-C-CH_3+CaO+CO_2$ Calcium acetate

8. Catalytic decomposition of Acids:

$$CH_{3} - C - OH + CH_{3} - C - OH \xrightarrow{MnO} CH_{3}COCH_{3} + H_{2}O + CO_{2}$$

$$CH_{3} - C - OH + HO - C - H \xrightarrow{MnO} CH_{3}CHO + H_{2}O + CO_{2}$$

$$(Cross product)$$

9. Reduction of Acid Chloride: (only Aldehydes are prepared by this method)

Note: The above reduction is known as *Rosenmund Reduction*.

10. From Dialkyl Cadmium: (only Ketones can be prepared by this method)

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
R'-Cd-R'+2R-C-Cl & \longrightarrow 2R-C-R'+CdCl_2
\end{array}$$

11. From Lithium Dialkylcuprates: (only Ketones are prepared by this method)

$$\begin{array}{ccc} & & & & O & & & O \\ \parallel & & \parallel & & \parallel & & \parallel \\ R_2' - CuLi + 2R - C - Cl & \xrightarrow{ether} & 2R - C - R' \end{array}$$

12. Cleavage of Diols:

By oxidative cleavage of 1, 2-diols (glycols) by periodic acid (HIO₄) or by lead tetra acetate, both aldehydes and ketones may be produced.

$$R - C - C - R' \xrightarrow{HIO_4} RCHO + R'CHO ; \qquad R C - C R' \xrightarrow{HIO_4} RCHO + R'CHO ; \qquad R C - C R' \xrightarrow{HIO_4} R C = O + R' C = O$$

$$C H = C C C C H \xrightarrow{HIO_4} 2C H CHO (Represidented)$$

$$\begin{array}{ccc} & H & H \\ C_6H_5 - C - C - C_6H_5 & \xrightarrow{HIO_4} & 2C_6H_5CHO & \text{(Benzaldehyde)} \\ & & OH & OH & \end{array}$$

13. Stephan Method: (only Aldehydes can be prepared by this method)

An alkyl cyanide is dissolved in ether or ester and reduced with stannous chloride and HCl and finally distilled to give aldehydes.

$$R - C \equiv N \xrightarrow{SnCl_2} R - C - H$$

Note: Using Grignard reagent with ester, cyanides and acid chlorides under proper conditions, one can prepare aldehydes and ketones. Refer to reactions of Grignard Reagent in Halogen derivatives.

- Nitriles are selectively reduced by di-isobutyl aluminium hydride (DIBAL-H) to imines and then to aldehydes by hydrolysis. It is also called as (DIBAH). RCN $\xrightarrow{1. \text{AlH}(\text{iso-Bu})_2}$ R -CHO
- > DIBAL-H also reduces acid halides to aldehydes.
- ➤ Esters can also be reduced to aldehydes using DIBAL-H. $RCOOR' \xrightarrow{1. AlH(iso-Bu)_2} RCHO + R'OH$

Preparation of Benzaldehyde : C₆H₅CHO

(a) Gattermann – Koch Reaction :
$$C_6H_6 + CO + HCl \xrightarrow{AlCl_3} C_6H_5CHO$$

Note: Gattermann Aldehyde Synthesis:
$$C_6H_6 + HCN + HCl \xrightarrow{AlCl_3} C_6H_5CHO + NH_4Cl$$

(b) Etard Reaction :
$$\begin{array}{c} CH_3 \\ + CrO_2Cl_2 \end{array} \begin{array}{c} CH(OCrOHCl_2)_2 \\ \hline \\ Toluene \end{array} \begin{array}{c} CHO \\ \hline \\ CS_2 \end{array}$$

Note: The above reaction can also be brought by CrO₃/acetic anhydride followed by acidic hydrolysis.

(c) From Benzyl Chloride:

By boiling benzyl chloride in aqueous solution of copper or lead nitrate in a current of CO₂ benzaldehyde can be prepared.

$$C_6H_5CH_2Cl \xrightarrow{Pb(NO_3)_2} C_6H_5CHO + HNO_2 + PbCl_2$$

Note: Benzaldehyde can also be prepared by Rosenmund reduction, Stephan method and Grignard reagent with formates.

$$\begin{array}{c} O \\ \parallel \\ C_6H_5MgBr + H - C - OR \\ \hline \end{array} \longrightarrow C_6H_5CHO + Mg(OR)Br$$
 formate

Preparation of Aromatic Ketones:

(a) Friedel-Craft Acylation reaction: Aromatic ketones can be formed by acylation of Benzene.

$$C_6H_6 + R - C - C1 \xrightarrow{\text{anhyd. AlCl}_3} C_6H_5 - C - R$$

(b) Fries rearrangement: It is an important method for the preparation of aromatic ketones from phenolic esters.

Note: Observe that phenolic group (–OH attached to benzene) can be reduced by zinc dust to give ketones.

Mechanism:

Illustration - 1 Visualise the formation of four products in the given reaction :

SOLUTION:

Observing the mechanism illustrated above, acyl carbocation is separated during rearrangement. This will result in $S_{\rm E}$ reaction in both the rings.

6

IN-CHAPTER EXERCISE-A

Choose the correct alternative. Only One choice is Correct. However, questions marked with '*' may have More than One correct option.

- *1. Which of the following reactions will give acetophenone as product?
 - (A) Acid catalysed hydration of styrene followed by oxidation with hot alkaline KMnO_A
 - (B) Phenyl acetylene $\frac{\text{dil H}_2\text{SO}_4/\text{Hg}^{2+}}{\text{dil H}_2\text{SO}_4/\text{Hg}^{2+}}$
 - (C) Reaction of benzoyl chloride with dimethyl cadmium
 - (D) Dry distillation of a mixture of calcium acetate and calcium benzoate
- *2. Which of the following reactions give aldehyde as a product?
 - (A) $CH_3 COOC_2H_5 \xrightarrow{1. DIBAL-H} 2. H_2O$
- (B) $C_6H_6 \xrightarrow{CO + HCl_{(g)}} AlCl_3/CuCl$
- (C) $C_6H_6 \xrightarrow{1. \text{ HCN} + \text{HCl}_{(g)}}$
- (D) $CH_3 CH_2 CN \xrightarrow{1. CH_3MgBr} 2. H_2O \rightarrow$
- *3. $CH_2OH \xrightarrow{Pb (CH_3COO)_4} Products. The possible product(s) obtained in the above reaction is(are):$
 - (A) OH
- (B)
- (C)
- (D) HCHO

- ***4.** Which of the following reactions are represented correctly?
 - (A) $\frac{\text{HIO}_4}{-\text{HIO}_3} \rightarrow 2 \longrightarrow 0$
- $\begin{array}{ccc} \mathrm{CH_2CH_2COO^-} \\ | & \\ \mathrm{CH_2CH_2COO^-} \end{array} \ \mathrm{Ba^{2^+}} \ \xrightarrow{\Delta \\ -\mathrm{BaCO_3}} \end{array} \ \boxed{\hspace{1cm}} = \mathrm{O}$
- (C) $OCOCH_3$ OH $COCH_3$ + OH $COCH_3$ + $COCH_3$ + $COCH_3$
- $\begin{array}{c|c} CH_3 & CHO \\ \hline \\ \hline \\ \hline \\ \hline \\ CS_2 \end{array}$

- *5. Acetone can be obtained by:
 - (A) alkaline hydrolysis of 2, 2-dichloropropane
 - (B) passing vapours of isopropyl alcohol over red hot copper
 - (C) acid catalyzed hydration of methyl acetylene
 - (D) ozonolysis of 2, 3-dimethylbut-2-ene
 - (E) acid catalyzed hydrolysis of cumene hydroperoxide
- **6.** $(CH_3)_2 C = CH_2 + CO + H_2 \xrightarrow{[Co(CO)_4]_2} A$

A formed is:

(A) $(CH_3)_2CHCH_2CHO$

(B) $(CH_3)_2 CH CCH_3$

(C) $(CH_3)_2CHCH_2CH_3$

(D) $(CH_3)_2 CH CHCH_3$ CH_3

7.
$$\frac{\text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{Cl}}{\text{AlCl}_3} \Rightarrow [P] \xrightarrow{1. \text{ O}_2/\Delta} [Q] + \text{ Phenol, P and Q are :}$$

(A) and
$$CH_3 - CH_2 - C - H$$
 (B) and $CH_3 - C - CH_3$

(C) and
$$CH_3 - C - CH_3$$
 (D) and $CH_3 - CH_2 - C - H_3$

Paragraph for Questions 8 - 10

In the following reaction sequence, products I, J and L are formed and K represents a reagent.

Hex-3-ynal
$$\xrightarrow{\text{1. NaBH}_4}$$
 I $\xrightarrow{\text{1. Mg/ether}}$ J $\xrightarrow{\text{K}}$ O $\xrightarrow{\text{Cl}}$ $\xrightarrow{\text{H}_2}$ L quinoline

8. The structure of the product **I** is:

(C)
$$Me$$
 Me Me Me

9. The structures of compounds J and K, respectively, are :

(A)
$$Me \longrightarrow COOH$$
 and $SOCl_2$ (B) $Me \longrightarrow OOH$ and SO_2Cl_2

(C)
$$Me$$
 COOH and $SOCl_2$ (D) Me COOH and CH_3SO_2Cl

10. The structure of product L is:

Paragraph for Questions 11 - 12

An acyclic hydrocarbon P, having molecular formula C_6H_{10} , gave acetone as the only organic product through the following sequence of reactions, in the which Q is an intermediate organic compound.

$$\begin{array}{c} [P] & \xrightarrow{1. \text{ dil. } H_2SO_2/HgSO_4} \\ (C_6H_{10}) & \xrightarrow{2. \text{ NaBH}_4/\text{ethanol}} \end{array} \end{array} \\ \begin{array}{c} [Q] & \xrightarrow{1. \text{ conc. } H_2SO_4(\text{Catalytic amount}), -H_2O} \\ \hline 2. O_3 \\ \hline 3. \text{ Zn/H}_2O \end{array} \\ \end{array} \\ \begin{array}{c} C \\ \hline H_3C \end{array} \\ \end{array} \\ CH_3$$

- 11. *The structure of compound P is*:
 - $CH_3CH_2CH_2CH_2 C \equiv C H$ **(A)**
- **(B)** $CH_3CH_2-C\equiv C-CH_2CH_3$

 H_3C $H - C - C \equiv C - CH_3$ H_2C **(C)**

- 12. The structure of the compound Q is:
 - H_3C OH $H-C-C-C+CH_2CH_3$ **(A)**

(B)

H₃C OH H-C-CHCH₂CH₃ **(C)**

CH₃CH₂CH₂ CH CH₂CH₃ **(D)**

OH

- An acid chloride on reaction with $\frac{H_2}{Pd BaSO_4}$ gives $(CH_3)_2 CHCHO$. It on reaction with $CH_3 MgBr/H_3 O^+$ will give: 13.
 - **(A)** $(CH_3)_2$ CHCOCH₃

(B) CH_3CHO

(C) CH_3COCH_3

- **(D)** CH₂CH₂CHO
- Grignard reagent can convert the following into carbonyl compounds except: 14.
 - **(A)** CH₃ C Cl
- $HCOCH_3$
- **(C)** $CH_3C \equiv N$
- **(D)** CH_2CH_2OH

- *Which is (are) the correct reaction(s)?* *15.
 - **(A)**

- $(HCOO)_2 Ca \xrightarrow{\Delta} HCHO$
- $CH_{3}CH = CH_{2} \xrightarrow{Oxo \ method} CH_{3}CH_{2}CH_{2}CHO \qquad \textbf{(B)} \qquad RCN \xrightarrow{DIBAL-H} RCHO$ $O \qquad \qquad O \qquad \qquad$
- CH_3CHO can be prepared by: ***16.**
 - Oxidation of CH_3CH_2OH using $Cr_2O_7^{2-}/H^+$ **(A)**
 - Oxidation of $CH_2 = CH_2$ using $PdCl_2$. $CuCl_2/H_2O$ **(B)**
 - Reaction of CH₃CN with SnCl₂/HCl/H₂O **(C)**
 - oxidation of CH₃CH₂OH using PCC/CH₂Cl₂ **(D)**
- $-OCH_3 \xrightarrow{H_3O^+} A$. The structure of A is: 17.

- **(D)**
- Which one of the following can be oxidised to the corresponding carbonyl compound? 18.
 - **(A)** 2-propanol
- **(B)** ortho-nitrophenol
- **(C)**
- Phenol (D)
- 2-methyl-2-propanol